学术活动
首页  -  科学研究  -  学术活动  -  正文
【学术报告】Optimal and superconvergence error estimates of $P^k$-DG methods on rectangular meshes for 2D hyperbolic equations

时间:2025-05-06

报告人:张智民(韦恩州立大学)

报告时间:2025年5月10日(星期六)16:00-18:00    

报告地点:科技楼南楼702会议室  

报告摘要:Optimal convergence rate of the $P^k$ discontinuous Galerkin (DG) methods under the rectangular mesh for hyperbolic equations is a long-standing unsolved theoretical problem. Until today, the best result is $h+1/2$ for general rectangular meshes. In 2020, Liu, Shu, and Zhang proved that under a uniform rectangular mesh, the optimal convergence rate is $k+1$ for linear problems with constant coefficients. For non-constant coefficients, the optimal rate has been proved for $k=0,1,2,3$. For the nonlinear case, only $k=2,3$ have been proved. In this work, we prove the $k+1$ optimal rate of convergence under the uniform rectangular mesh for variable coefficients and nonlinear cases for all $k$. In addition, we discover some super-convergence phenomena for $P^k$-DG for the first time.

报告人简介:张智民,美国韦恩州立大学教授,Charles H. Gershenson 杰出学者。研究方向是偏微分方程数值解,包括有限元,有限体积,谱方法等,发表学术论文200余篇;提出的多项式保持重构Polynomial Preserving Recovery(PPR)格式于2008年被国际上广为流行的大型商业软件 COMSOL Multiphysics 采用,并使用至今。担任或曾任“Mathematics of Computation” “Journal of Scientific Computing” 等9个国际计算数学杂志编委。

邀请人:李东方


地址:中国·湖北省·武汉市珞喻路1037号 sunbet中国官网(东三十一楼)
邮政编码:430074     办公电话 E-mail:mathhust@mail.hust.edu.cn
Copyright 2025 ◎ 申博·sunbet(中国区)官方网站-Officials Website